http://www.stockton-press.co.uk/bip

Nociceptin, $Phe^1\psi$ -nociceptin₁₋₁₃, nocistatin and prepronociceptin₁₅₄₋₁₈₁ effects on calcium channel currents and a potassium current in rat locus coeruleus in vitro

*.¹Mark Connor, ¹Christopher W. Vaughan, ¹Ernest A. Jennings, ³Richard G. Allen & ²Macdonald J. Christie

¹Department of Pharmacology, The University of Sydney, Sydney 2006, NSW, Australia; ²The Medical Foundation, The University of Sydney, Sydney 2006, NSW, Australia and ³The Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, 3181 Sam Jackson Park Road, Portland, Oregon, OR 97201, U.S.A.

- 1 The actions of the neuropeptide nociceptin, the putative nociceptin receptor antagonist $[Phel\psi(CH_2-NH)Gly^2]$ -nociceptin- $(1-13)NH_2$ $[Phel\psi-nociceptin_{1-13})$ and the putative nociceptin precursor products nocistatin (rat prepronociceptin₁₂₅₋₁₃₂) and rat prepronociceptin₁₅₄₋₁₈₁ were examined on membrane properties of rat locus coeruleus (LC) neurons using whole cell patch clamp techniques.
- 2 Nociceptin inhibited I_{Ba} in all LC neurons, (pD_2) of 8.9, maximum inhibition 50%). The inhibition of I_{Ba} by nociceptin was associated with slowing of the activation of I_{Ba} and could be significantly reversed by a strong depolarizing prepulse. Phe¹ ψ -nociceptin₁₋₁₃ also inhibited I_{Ba} in LC neurons (notional pD_2 of 7.6, maximum inhibition 18%). Application of Phe¹ ψ -nociceptin₁₋₁₃ (1 μ M) significantly occluded the subsequent effects of a co-application of nociceptin (3 nM) on I_{Ba} .
- 3 As previously reported for nociceptin, $Phe^1\psi$ -nociceptin₁₋₁₃ caused an outward current in LC neurons voltage clamped at -60 mV (pD_2 of 7.1, maximum current 50% of that of methionine enkephalin, 10 μM). The Phe¹ψ-nociceptin₁₋₁₃ induced current reversed polarity at -112 mV and exhibited pronounced inward rectification. Phe $^{1}\psi$ -nociceptin₁₋₁₃ (1 μ M) reversibly inhibited the current caused by nociceptin (300 nm) by 30%.
- 4 Neither nocistatin nor rat prepronociceptin₁₅₄₋₁₈₁ inhibited I_{Ba} in LC neurons, or prevented the subsequent inhibition by nociceptin. Neither nocistatin or prepronociceptin₁₅₄₋₁₈₁ affected the membrane properties of LC neurons.
- This study demonstrates that nociceptin modulates somatic I_{Ba} in rat LC neurons. The putative ORL1 antagonist Phe $^{1}\psi$ -nociceptin $_{1-13}$ exhibited partial agonist activity at inhibiting I_{Ba} and opening K+ channels in LC. Other putative nociceptin precursor products were without effect on

Keywords: Nociceptin; orphanin FQ; nocistatin; ORL1; locus coeruleus; calcium channels; partial agonist; potassium

Abbreviations: ACSF, physiological saline; BSA, bovine serum albumin; CHO, chinese hamster ovary cells; G-protein, heterotrimeric guanine nucleotide-binding protein; I_{Bo} , calcium channel current; I_K , potassium current; LC, locus coeruleus; ME, methionine enkephalin; ORL1, opioid receptor-like protein; Phe¹ψ-nociceptin₁₋₁₃, [Phe1ψ(CH₂-NH)Gly²]-nociceptin-(1-13)NH₂

Introduction

Nociceptin (Meunier et al., 1995), also called orphanin FQ (Reinscheid et al., 1995), is an endogenous ligand for the opioid-like receptor, ORL1 (Mollereau et al., 1994; reviewed in Henderson & McKnight, 1997). To date, nociceptin has been shown to modulate a similar range of ion channels and second messenger cascades as opioids (Henderson & McKnight, 1997) and the nociceptin/ORL1 system has been implicated in a wide variety of physiological processes (Darland et al., 1998). Nociceptin is one of three putative peptide products of the prepronociceptin gene (Houtani et al., 1996; Okuda-Ashitaka et al., 1998) that have been shown to produce behavioural effects in mice (Florin et al., 1997; Okuda-Ashitaka et al., 1998; Rossi et al., 1998). Intriguingly, one of these other prepronociceptin peptides, nocistatin (rat prepronociceptin₁₁₆₋₁₃₂), was reported to reverse the effects of nociceptin both in vivo and in vitro (Nicol et al., 1998; Okuda-Ashitaka et al., 1998). The cellular basis for these effects is not established, but nocistatin does not appear to directly interact with ORL1 (Okuda-Ashitaka et al., 1998).

Detailed investigations of the role of nociceptin have been hampered by the lack of effective antagonists for the ORL1 receptor. A synthetic analogue of nociceptin, [Phe1ψ(CH₂-NH)Gly²]-nociceptin-(1-13)NH₂ (Phe¹ ψ -nociceptin₁₋₁₃), was reported to antagonize the inhibitory effects of nociceptin on contractions of the guinea-pig ileum and mouse vas deferens (Guerrini et al., 1998), and to be devoid of significant agonist activity (Calo et al., 1998a; Guerrini et al., 1998; Meis & Pape, 1998). However, subsequent studies have shown that Phe¹ ψ nociceptin₁₋₁₃ is a potent agonist at recombinant ORL1 receptors (Butour et al., 1998; Okawa et al., 1999) and that it mimics the inhibitory effects of nociceptin on nociceptive responses in rats (Carpenter & Dickenson, 1998; Xu et al., 1998), as well as the nociceptin reversal of morphine-induced supra-spinal analgesia in mice (Calo et al., 1998b; Grisel et al., 1998). Phe ψ -nociceptin₁₋₁₃ acts as a partial agonist with

^{*}Author for correspondence; E-mail: markc@pharmacol.usyd.edu.au

respect to nociceptin in assays of noradrenaline release in mouse brain (Schlicker *et al.*, 1998), substance P release in guinea-pig airway (Shah *et al.*, 1998), and activation of K + channels (I_K) in suprachiasmatic nucleus neurons (Allen *et al.*, 1999).

We have previously shown that nociceptin activates an inwardly rectifying potassium conductance in rat locus coeruleus (LC) neurons (Connor *et al.*, 1996). In this study we have compared the effects of nociceptin and $Phe^1\psi$ -nociceptin₁₋₁₃ on calcium and potassium channels in locus coeruleus neurons, as well as examining the effects of several other putative prepronociceptin products on LC neurons.

Methods

Sprague-Dawley rats of either sex (post natal days 19 – 20, for slice experiments; post natal days 28-35 for dissociated cell experiments) were used for this study. The rats were anaesthetized with halothane and then killed by cervical dislocation. Horizontal slices (250 μ m thick for slice experiments; $290-310 \mu M$ thick for preparation of dissociated cells) containing the LC were cut with a vibratome in ice cold physiological saline (ACSF) of composition (mM) NaCl 126, KCl 2.5, MgCl₂ 1.2, CaCl₂ 2.4, NaH₂PO₄ 1.2, NaHCO₃ 24 and glucose 11; gassed with 95% $O_2/5\%$ CO_2 . For recordings of I_K , brain slices were placed in a chamber (1.5 ml volume) mounted on the stage of an upright microscope (Olympus BH-2 with a fixed-stage modification) and viewed using a water immersion objective (Zeiss, ×40). Slices were continuously superfused (2 ml min⁻¹) with ACSF (32°C). Neurons located in the LC were visualized using infra-red Nomarski optics and recordings of I_K made using standard whole cell voltage clamp techniques. Recordings were made with borosilicate pipettes of resistance $3-7\ M\Omega$ when filled with intracellular solution of the following composition (mM): potassium gluconate 140; NaCl 15; MgCl₂ 1; HEPES 10; EGTA 11; MgATP 2; Na₂GTP 0.25; adjusted to a pH of 7.3 with KOH. Neurons were voltage clamped at -60 mV (Axopatch 1D, Axon Instruments, Foster City, CA, U.S.A.), series resistance ($<12 \text{ M}\Omega$) was compensated by 80% and continuously monitored during experiments. Currents were sampled at 50 Hz for subsequent analysis (Axograph 4.0, Axon Instruments). Liquid junction potentials of -11 mV were corrected. Drugs were applied to the slice by changing the perfusion buffer to one that differed only in the content of drug.

For recordings of currents through calcium channels, cells were dissociated using procedures based on those outlined in Ingram *et al.* (1997). After a 30 min incubation in ACSF (35°C) slices were transferred to a dissociation buffer of composition (mM) Na₂SO₄ 82, K₂SO4 30, HEPES 10, MgCl₂ 5, glucose 10, containing 20 units ml⁻¹ papain, pH 7.3 and incubated for 2 min at 35°C. The slices were then placed in fresh dissociation buffer containing 1 mg ml⁻¹ bovine serum albumin (BSA) and 1 mg ml⁻¹ trypsin inhibitor. The LC region was subdissected from each slice with a fine tungsten wire and the cells dissociated from the slices by very gentle trituration in a pasteur pipette with a fire polished tip. The cells were plated onto plastic culture dishes and kept at room temperature in dissociation buffer. Cells remained viable for up to 6 h after dissociation.

Recordings of currents through Ca²⁺ channels were made using standard whole cell patch clamp techniques (Hamill *et al.*, 1981) at room temperature (22–24°C). Immediately prior to recording, cells were superfused with a buffer of composition (mM) NaCl 140, KCl 2.5, CaCl₂ 2.5, MgCl₂ 1.5,

HEPES 10, glucose 10, pH 7.3 in order to wash off the dissociation buffer. For calcium channel current recordings, cells were superfused in solution containing (mM) tetraethylammonium chloride 140, BaCl₂ 2, MgCl₂ 1, CsCl 2.5, HEPES 10. glucose 10. BSA 0.05%, pH 7.3. Recordings were made with fire polished borosilicate pipettes of resistance approximately 2 $M\Omega$ when filled with intracellular solution of the following composition (mm): CsCl 110, MgATP 5, Na₂GTP 0.2, EGTA 10, CaCl₂ 2 and HEPES 10, pH 7.3. The peak calcium channel current in each cell was determined by stepping the membrane potential from a holding potential of -90 mV to potentials between -60 and +60 mV, usually for 30 ms, in 10 mV increments. The test current evoking a peak calcium channel current was then evoked every 30 s, and monitored for at least a further 2 min before drugs were applied. The inhibition of drugs was quantified by measuring the current amplitude isochronically with the peak of the control calcium channel current. Cells in which the calcium channel current declined in the absence of drug treatment were discarded. Whole cell capacitance and series resistance were compensated manually by nulling the capacitive transient evoked by a 20 mV pulse from -90 mV. The series resistance was between 1.5 and 5 M Ω ; series resistance compensation of at least 80% was used in all experiments. An approximate value of whole cell capacitance was read from the amplifier capacitance compensation circuit (Axopatch 1D). Leak current was subtracted on line using a P/8 protocol, unless otherwise noted, typically the leak conductance was less than 1 nS. Evoked calcium channel currents were sampled at 5-10 kHz and recorded on hard disk for later analysis. Data was collected and analysed off line with the PCLAMP suite of programs (Axon Instruments). Cells were exposed to drugs via a series of flow pipes positioned above the cells. Drugs were applied after at least 2 min of control currents were collected, subsequent drug applications were made after the effects of the first drug application had fully reversed, or in the case of drug co-applications, 2 min into the application of the first drug. All data are expressed as mean ± s.e.mean, unless otherwise indicated. Statistical significance was determined by using an unpaired students t-test unless otherwise stated.

Drugs and chemicals

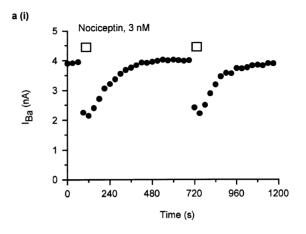
Buffer salts were from BDH Australia or Sigma Australia. Papain was from Worthington Biochemical Corporation (Freehold, NJ, U.S.A.). BSA and trypsin inhibitor (Type II-O) were from Sigma Australia. Nociceptin (Phe-Gly-Gly-Phe-Thr-Gly-Ala-Arg-Lys-Ser - Ala - Arg - Lys - Leu - Ala-Asn-Gln) was synthesized and purified by Chiron Mimotopes (Clayton, Victoria, Australia). Nocistatin, (rat prepronociceptin₁₂₅₋₁₃₂, mPNP-3-8P, Glu-Val-Glu-Gln-Lyn-Gln-Leu-Gln) was synthesized and purified by Auspep (Parkville, Victoria, Australia). Rat prepronociceptin₁₅₄₋₁₈₁ (mouse prepronociceptin₁₆₀₋₁₈₇) (Phe-Ser-Glu-Phe - Met - Arg - Gln - Tyr-Leu-Val-Leu-Ser-Met-Glu-Ser-Ser-Glu-Arg - Arg - Thr - Leu - His - Gln - Asn - Gly - Asn - Val) was made by solid phase synthesis by Research Genetics, Huntsville, Alabama, U.S.A.). [Phe1\psi(CH₂-NH)Gly²]-nociceptin-(1-13)NH₂ was a kind gift of Dr G. Calo.

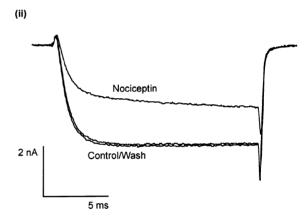
Results

Dissociated LC neurons were identified as large (mean membrane capacitance 32 ± 1 pF, n=86), usually multipolar neurons with somata shapes characteristic of LC neurons described in fixed tissue preparations (e.g. Swanson, 1976). In

our dissociations the only cells of comparable size were large, spherical cells with a single small process, which were presumably MeV neurons. When LC neurons were stepped from a holding potential of -90 mV to potentials between -60 and +60 mV the inward currents in most cells began to activate at about -40 mV and were invariably greatest at membrane potentials between -10 and 0 mV. The peak current density did not differ between cells from male $(125\pm7~{\rm pA~pF^{-1}},~n=48)$ and female rats $(116\pm6~{\rm pA~pF^{-1}},~n=49)$. The peak inward current could be abolished by Cd²⁺ $(30~\mu{\rm M},~{\rm data}~{\rm not}~{\rm shown})$.

Nociceptin inhibited the peak inward I_{Ba} in all LC neurones when applied at a concentration of 300 pM or more (n=89). The effects of nociceptin reversed on washout (Figure 1a). A concentration response relationship for nociceptin inhibition of I_{Ba} was determined by application of one or more concentrations of nociceptin to cells stepped repetitively from -90 mV to the membrane potential that evoked the largest I_{Ba} in each neuron (either -10 or 0 mV). A logistic function fitted to the concentration-response relationship for nociceptin inhibition of I_{Ba} , gave a pD_2 for nociceptin of 8.9 ± 0.1 with a slope factor the curve of 0.8 ± 0.1 (Figure 1b). The maximum inhibition of I_{Ba} by nociceptin was about 50% (Figure 1b).


The inhibition of I_{Ba} by nociceptin was evident at a wide range of membrane potentials (Figure 2a) and was associated with a pronounced slowing of the activation of I_{Ba} (Figures 1a and 2b). When applied at a concentration of 3 nM, nociceptin increased the 0-95% risetime of I_{Ba} from 2.9 ± 0.2 ms to 5.9 ± 0.8 ms (P<0.003, paired t-test, n=9), the slowing reversed on washout of nociceptin (risetime was 2.8 ± 0.2 ms after wash P>0.7, paired t-test versus predrug risetime).


The inhibition of I_{Ba} by nociceptin could be attenuated by a strong positive depolarizing step shortly before the test step. In the experiments illustrated in Figure 3a, LC steps were stepped twice to -10 mV, with an 80 ms depolarizing step to +80 mVbetween the test steps. These experiments were performed without leak subtraction. In control conditions, the amplitudes of the first (T1) and second (T2) test step did not differ from each other (P>0.8, unpaired t-test), the ratio of T2:T1 was 0.97 ± 0.02 (n = 9). However, in the presence of nociceptin (100 nm), the amplitudes of the first step and the second step were significantly different from each other (P < 0.006, unpaired t-test), the ratio of T2:T1 was 1.6 ± 0.05 (n = 9). In the presence of nociceptin the amplitude of the first step was reduced by $52 \pm 2\%$ (P < 0.0002, paired t-test) compared to the first test step in the absence of drug, while the amplitude of the second test step was reduced by only $21 \pm 1\%$ (P<0.0002, paired t-test) compared to second test step in the absence of nociceptin. The inhibition of the first test pulse (T1) by nociceptin was significantly greater (P < 0.002) than the inhibition of the test pulse (T2) following the 80 ms depolarization to +80 mV.

While the step to +80 mV partly reversed the nociceptin inhibition of the amplitude of I_{Ba} , it completely reversed the kinetic slowing of I_{Ba} activation caused by nociceptin. The 0-95% risetime of the first step to -10 mV (T1) was 2.7 ± 0.1 ms, in the presence of nociceptin (100 nM) the risetime was 4.9 ± 0.3 ms (P<0.0002, paired t-test, n=9). The 0-95% risetime of the test step (T2) after the depolarizing step was 2.9 ± 0.1 ms, in the presence of nociceptin the risetime was also 2.9 ± 0.1 ms, which is not different from that in the absence of drug (P>0.8, paired t-test, n=9).

When there was no depolarizing step between the two test pulses, there was not relief from the effect of nociceptin on the amplitude or kinetics of I_{Ba} (Figure 3b). When cells were stepped twice to -10 mV, separated by 90 ms at the holding

potential of -90 mV, the amplitudes of the first (T1) and second (T2) test step did not differ from each other (P > 0.8, unpaired t-test), the ratio of T2:T1 was 0.95 ± 0.01 (n = 5). In the presence of nociceptin (100 nM), the amplitude of the first

- b Nociceptin
 - o Phe 1 ψ-nociceptin 1-13
 - ♦ Phe 1ψ-nociceptin 1-13, after nociceptin

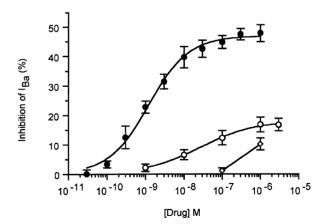


Figure 1 Modulation of LC calcium channel currents by nociceptin. I_{Ba} was elicited by repetitively stepping the membrane potential from -90 mV to -10 mV. (a) (i) A time plot of the peak amplitude of I_{Ba} illustrating the effects of repeated applications of nociceptin. (ii) Selected traces from the same experiment, showing the inhibition of I_{Ba} by nociceptin. (b), Concentration-response relationship for nociceptin (EC₅₀, 2 nM), and Phe¹ ψ -nociceptin₁₋₁₃ (EC₅₀, 30 nM) inhibition of I_{Ba} in LC neurons. Each point represents at least five cells tested. Also shown is the response of LC neurons to Phe¹ ψ -nociceptin₁₋₁₃ applied after application and washout of nociceptin (1–30 nM) (n=5 for 100 nM, n=9 for 1 μ M Phe¹ ψ -nociceptin₁₋₁₃).

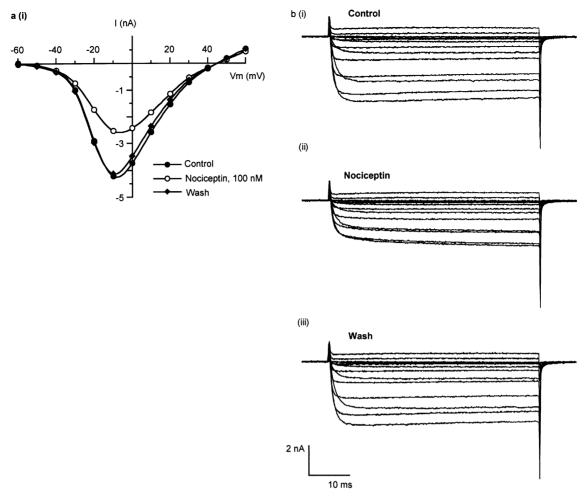


Figure 2 Characteristics of nociceptin modulation of I_{Ba} . I_{Ba} were elicited by stepping the membrane potential from -90 mV to potentials between -60 and +60 mV in 10 mV increments. Nociceptin inhibited I_{Ba} over a range of membrane potentials. (a) A plot of the peak inward current at each test potential, before, during and after an application of nociceptin, 100 nM. This cell is a typical example of six experiments. (b) Families of traces from the same experiment, showing the I_{Ba} elicited by the steps from a holding potential of -90 mV to a test potential between -60 and +60 (i) in the absence of drug, (ii) in the presence of nociceptin and (iii) following wash of nociceptin.

test pulse was reduced by $47\pm4\%$ (P<0.03, paired t-test, n=5) and the amplitude of the second test pulse was reduced by $45\pm4\%$ (P<0.04, paired t-test). In the presence of nociceptin the ratio of T2:T1 was 0.98 ± 0.1 (n=5). The 0-95% risetime of the first test step to -10 mV was 2.6 ± 0.1 ms, in the presence of nociceptin (100 nM) the risetime was 4.2 ± 0.5 ms (P<0.02, paired t-test, n=5). The 0-95% risetime of the second test step was 2.7 ± 0.1 ms, in the presence of nociceptin the risetime was 4.9 ± 0.5 ms (P<0.002, n=5).

When applied to LC neurons before nociceptin, $Phe^1\psi$ -nociceptin₁₋₁₃ inhibited I_{Ba} in a concentration dependent manner, however, unlike the effects of nociceptin, the inhibition of I_{Ba} by $Phe^1\psi$ -nociceptin₁₋₁₃ did not readily reverse on washout (Figure 4b). Equations describing concentration response relationships for agonists assume agonist/effector reactions are freely reversible, and the interaction of $Phe^1\psi$ -nociceptin₁₋₁₃ with I_{Ba} is apparently not. However, a logistic function was fitted to the concentration response data from cells in which $Phe^1\psi$ -nociceptin₁₋₁₃ was applied first, to obtain a notional pD_2 of 7.6 ± 0.2 , with a maximum inhibition of about 18% (Figure 1b). In cells where nociceptin (1-30 nM) had been applied before $Phe^1\psi$ -nociceptin₁₋₁₃, the agonist effects of $Phe^1\psi$ -nociceptin₁₋₁₃ on I_{Ba} were strongly attenuated (Figure 1b).

When LC cells were stepped twice to -10 mV, with an 80 ms depolarizing step to +80 mV between the test steps, application of $\text{Phe}^1\psi$ -nociceptin₁₋₁₃ (3 μ M) inhibited the amplitude of first step (T1) by $24\pm9\%$, (P<0.05, paired t-test, n=7) but did not significantly inhibit the amplitude of the second step (T2, inhibition was $10\pm5\%$, P=0.08, paired t-test, n=7). In these cells the ratio of T2: T1 before the application of $\text{Phe}^1\psi$ -nociceptin₁₋₁₃ (3 μ M) was 1.01 ± 0.04 , during the application of $\text{Phe}^1\psi$ -nociceptin₁₋₁₃ (3 μ M) the ratio was 1.25 ± 0.09 (P=0.06 paired t-test, n=7).

Superfusion of Phe¹ ψ -nociceptin₁₋₁₃ occluded the effects of a co-application of nociceptin (3–30 nM nociceptin, n=9, Figure 4a). In the presence of Phe¹ ψ -nociceptin₁₋₁₃ (1 μ M), I_{Ba} was inhibited by $7\pm2\%$, application of nociceptin (3 nM) in the continued presence of Phe¹ ψ -nociceptin₁₋₁₃ (1 μ M) did not inhibit I_{Ba} any further (inhibition was $1\pm1\%$, n=5, Figure 4a). In parallel control experiments nociceptin inhibited I_{Ba} by $26\pm4\%$ (P<0.01 vs total inhibition of I_{Ba} by Phe¹ ψ -nociceptin₁₋₁₃ (1 μ M) + nociceptin (3 nM), which was $8\pm3\%$). Because of the partial agonist-like actions of Phe¹ ψ -nociceptin₁₋₁₃ in LC cells, we did not systematically examine the potency of Phe¹ ψ -nociceptin₁₋₁₃ to inhibit the actions of nociceptin. Application of Phe¹ ψ -nociceptin₁₋₁₃ also partly occluded the inhibition of I_{Ba} by a maximally effective concentration of the opioid agonist methionine-enkephalin

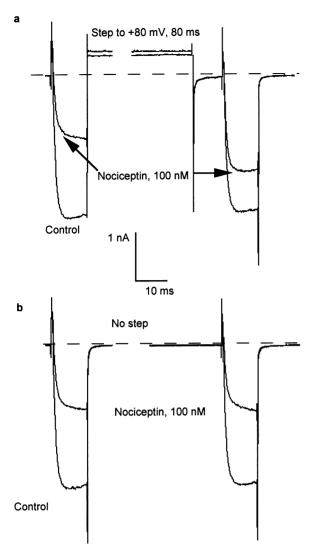


Figure 3 Nociceptin inhibition of I_{Ba} is relieved by a positive prepulse. An LC neuron was voltage clamped at -90 mV and stepped twice to a test potential of -10 mV, with 90 ms between the test pulses. In (a), and 80 ms positive step to +80 mV was applied to the cell immediately after the first test pulse. In (b), the cell was held at -90 mV for the 90 ms between test pulses. The resulting raw current traces for steps in the absence of drug and in the presence of nociceptin are shown. Traces in (a) and (b) are from two separate applications of nociceptin about 10 min apart. The dashed line represents the zero current line, because of the complex step paradigm leak subtraction was not used. The break in the current traces represent a section of about 50 ms that has been omitted for clarity. Note that in (a), the amplitude of the second step is facilitated compared with the first, while in (b) there is no facilitation. Note also that in (a), nociceptin inhibits the outward current through the calcium channels at +80 mV. The experiment in (a) is typical of nine cells, the experiment in (b) of five cells.

(ME, Figure 4b). ME alone (10 μ M) inhibited I_{Ba} by $47 \pm 2\%$ (n = 7); in the presence of Phe¹ ψ -nociceptin₁₋₁₃ (1 μ M) and ME (10 μ M) the inhibition of I_{Ba} was also $47 \pm 2\%$ (n = 6). In these experiments Phe¹ ψ -nociceptin₁₋₁₃ (1 μ M) alone inhibited I_{Ba} by $12 \pm 2\%$ and ME inhibited the remaining current by $39 \pm 2\%$ (significantly less than control, P < 0.02).

Nociceptin increases I_K in LC neurons in brain slices (Connor *et al.*, 1996). Phe¹ ψ -nociceptin₁₋₁₃ also produced a reversible, concentration-dependent outward current when applied to LC neurons voltage clamped at -60 mV in slices (Figure 5). The current activated by Phe¹ ψ -nociceptin₁₋₁₃ was examined by determining the steady state current-voltage relationships for LC neurons in the presence and absence of

Phe¹ ψ -nociceptin₁₋₁₃. The current activated by Phe¹ ψ -nociceptin₁₋₁₃ reversed polarity at -112 ± 4 mV (n=5), and was accompanied by an increase in membrane conductance. The current activated by Phe¹ ψ -nociceptin₁₋₁₃ showed pronounced inward rectification. The cord conductance of the Phe¹ ψ -nociceptin₁₋₁₃-activated current measured at -60 mV was 0.8 ± 0.3 nS, the cord conductance measured at -130 mV was 2.1 ± 0.5 nS (n=5). The conductance activated by a high concentration of ME ($10~\mu$ M) in the same cells reversed polarity at -116 ± 7 mV (n=5). The cord conductance of the ME-activated current measured at -60 mV was 2.1 ± 0.3 nS, and 4.7 ± 0.6 nS when measured at -130 mV (n=5).

A logistic function fitted to the concentration-response relationship for $Phe^1\psi$ -nociceptin₁₋₁₃ activation of I_K gave a pD_2 of 7.10 ± 0.05 with a slope factor for the curve of 1.8 ± 0.05 (Figure 5b). The highest concentrations of $Phe^1\psi$ -nociceptin₁₋₁₃ examined caused an outward current that was about 50% of that caused by application of a high concentration of ME (10 μ M, Figure 5). We have previously shown that nociceptin produces a maximal current similar to that caused by high concentrations of ME.

Application of Phe¹ ψ -nociceptin₁₋₁₃ (1 μ M) in the continued presence of a submaximally effective concentration of nociceptin (300 nM) reversibly reduced the outward current caused by nociceptin to $70\pm7\%$ of the pre-Phe¹ ψ -nociceptin₁₋₁₃ value (n=7, Figure 5c).

Application of nocistatin (10 μ M) did not affect I_{Ba} in any LC neuron tested (Figure 4c, n=8), nor did it affect the inhibition of I_{Ba} by a subsequent co-application of nociceptin. The inhibition of I_{Ba} produced by nociceptin (3 nM) in the presence of nocistatin (10 μ M) was similar to that produced in the absence of nocistatin (29 \pm 3%, n=7, versus 27 \pm 4%, n=6, respectively). Application of nocistatin (1 μ M) did not change the membrane current or conductance of LC neurons voltage clamped at -60 mV in slices (n=5).

Application of rat prepronociceptin₁₅₄₋₁₈₁ (1 μ M) did not affect I_{Ba} in any LC neuron tested (I_{Ba} was $100\pm1\%$ of control after 2 min in prepronociceptin₁₅₄₋₁₈₁, n=8), nor did it affect the inhibition of I_{Ba} by a subsequent co-application of nociceptin. The inhibition of I_{Ba} produced by nociceptin (3 nM) in the presence of prepronociceptin₁₅₄₋₁₈₁ (1 μ M) was similar to that produced in the absence of prepronociceptin₁₅₄₋₁₈₁ ($20\pm3\%$, n=5, versus $22\pm5\%$, n=4, respectively). Application of prepronociceptin₁₅₄₋₁₈₁ (1 μ M) did not change the membrane current or conductance of LC neurons voltage clamped at -60 mV in slices (n=5).

Discussion

This study demonstrates that nociceptin, the endogenous ligand for the ORL1 receptor, inhibits I_{Ba} in all rat locus coeruleus neurons. Nociceptin has been previously shown to increase I_K in the same neurons (Connor et al., 1996). The functional significance of modulation of I_{Ba} in LC neurons is not established, however, nociceptin is known to reduce noradrenaline release from mouse brain cortex in vitro, which presumably reflects inhibitory actions of nociceptin on the nerve terminals of LC cells (Schlicker et al., 1998). It is possible that this inhibition of noradrenaline release occurs via inhibition of LC nerve terminal calcium channels, although opening of nerve terminal (or somatic) K + channels would be expected to have a similar inhibitory effect. The potency for nociceptin inhibition of noradrenaline release (about 30 nm, Schlicker et al., 1998) is between that for nociceptin inhibition of I_{Ba} (2 nM), and activation of I_K (90 nM, Connor et al., 1996).

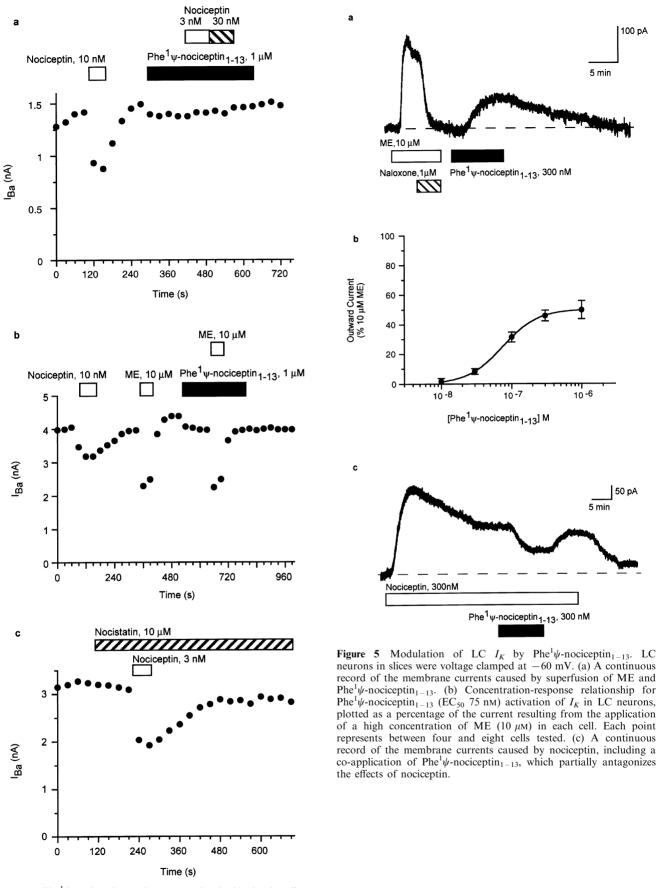


Figure 4 Phe¹ ψ -nociceptin₁₋₁₃ but not nocistatin blocks the effects of nociceptin on I_{Ba} . I_{Ba} was elicited by repetitively stepping the membrane potential from -90 mV to 0 mV in each cell. (a) A time plot of the peak amplitude of I_{Ba} illustrating the effects of nociceptin, followed by the application of the Phe¹ ψ -nociceptin₁₋₁₃, which has little effect on I_{Ba} itself but antagonizes the effects of a subsequent coapplication of nociceptin (3 and 30 nM). (b) A time plot of the peak

amplitude of I_{Ba} illustrating the effects of nociceptin and ME, followed by an application of $\text{Phe}^1\psi$ -nociceptin₁₋₁₃, which has little effect on a subsequent co-application of ME. (c) A time plot of the peak amplitude of I_{Ba} illustrating the effect of nocistatin, followed by a co-application of nociceptin and nocistatin.

The finding that nociceptin was considerably more potent at inhibiting I_{Ba} in dissociated LC cells than in activating I_K in LC cells in slices is similar to previous findings in PAG neurons, where nociceptin inhibited I_{Ra} in dissociated cells with an EC₅₀ of 5 nm (Connor & Christie, 1998), but activated I_K with an EC₅₀ of 42 nm (Vaughan et al., 1997). These differences in potency may reflect stronger coupling of ORL1 receptor to I_{Ra} than I_K , as previously demonstrated for the μ -opioid receptor in acutely isolated neonatal LC neurons (Ingram et al., 1997). Alternatively, these differences could be due to degradation of nociceptin in slice preparations. It would have been of interest to determine the effects of nociceptin on I_{Ba} in LC slices, however the size and geometry of LC neurons make it impossible to achieve a semblance of a voltage clamp of I_{Ba} in these cells (M. Connor and M.J. Christie unpublished observations 1987 – 1999).

The inhibition of I_{Ba} in LC by nociceptin was probably mediated by activation of heterotrimeric guanine nucleotide binding proteins (G proteins), as has been demonstrated for nociceptin inhibition of high voltage activated I_{Ba} in hippocampus (Knoflach et al., 1996), periaqueductal grey (Connor & Christie, 1998) and sensory neurons (Abdulla & Smith, 1997). In the present study the inhibition of I_{Ba} by nociceptin was rapid, reversible, evident across a range of membrane potentials and was associated with a pronounced slowing of the activation of the currents, all characteristic features of the ubiquitous G protein $\beta \gamma$ -subunit mediated pathway for inhibition of I_{Ba} (Herlitze et al., 1996; Ikeda, 1996). Further, the nociceptin-induced inhibition of the amplitude of I_{Ba} could be significantly reversed by a depolarizing prepulse to +80 mV. The relief of inhibition by the depolarizing prepulse is thought to reflect a voltagedependent dissociation of G protein $\beta \gamma$ subunits from the calcium channels (Herlitze et al., 1996; Ikeda, 1996; Zamponi & Snutch, 1998). Intriguingly, in contrast to the incomplete reversal of the nociceptin-induced inhibition of I_{Ba} amplitude, the depolarizing prepulse completely reversed the nociceptininduced kinetic slowing of I_{Ba} . Although the reason for this is not known, the observation suggests that there may be a voltage-independent component of nociceptin modulation of I_{Ba} in LC neurons. It should be noted that the present study utilized Ba2+ as a charge carrier and strong intracellular Ca²⁺ buffering to maintain stable calcium channel currents. Thus, any modulation of I_{Ba} by Ca^{2+} -dependent process would be likely to be suppressed in the present experiments, and it is possible that nociceptin may act via such additional mechanisms to modulate I_{Ba} in vivo.

The peptide analogue of nociceptin, $Phe^1\psi$ -nociceptin₁₋₁₃, appears to act as a partial agonist both at inhibiting I_{Ba} and activating I_K . The maximal effect of Phe¹ ψ -nociceptin₁₋₁₃ was less than that of nociceptin on both conductances (see Connor et al., 1996, for comparison of nociceptin and ME on I_K) while high concentrations of Phe¹ ψ -nociceptin₁₋₁₃ occluded the effects of a co-application of nociceptin. Previous studies have reported $Phe^1\psi$ -nociceptin₁₋₁₃ to be either a pure antagonist (Bigoni et al., 1999; Guerrini et al., 1998; Meis & Pape, 1998), a partial agonist (Allen et al., 1999; Bigoni et al., 1999; Okawa et al., 1999; Schlicker et al., 1998; Shah et al., 1998) or a full agonist (Butour et al., 1998; Calo et al., 1998b; Grisel et al., 1998; Okawa et al., 1999; Xu et al., 1998) in various assays of putative ORL1 function. The agonist activity of Phe¹ ψ -nociceptin₁₋₁₃ appears to be strongest in whole animals experiments (Calo et al., 1998b; Grisel et al., 1998; Kapusta et al., 1999; Xu et al., 1998) or cells overexpressing ORL1 (Butour et al., 1998; Okawa et al., 1999).

The most parsimonious explanation of the different actions of $Phe^1\psi$ -nociceptin $_{1-13}$ in various bioassays is that the receptor/effector coupling for nociceptin/ORL1 differs in various parts of the nervous system. In a cell line where ORL1 is a heterologously expressed to a high level, $Phe^1\psi$ -nociceptin $_{1-13}$ is full agonist, as may be expected in a situation when coupling efficiency is artificially high. Further, agents that are partial agonists in *in vitro* bioassays, such as morphine, (e.g. Alt *et al.*, 1998; Lemaire *et al.*, 1978; Ingram *et al.*, 1997) can demonstrate full agonist activity in *in vivo* assays of more complex functions such as analgesia, presumably because of the larger receptor reserve apparently available *in vivo* (e.g. Adams *et al.*, 1990; Mjanger & Yaksh, 1990).

The perceived lack of agonist activity of Phe¹ ψ -nociceptin₁₋₁₃ in peripheral assays of nociceptin action has also been suggested to reflect a heterogeneity of nociceptin receptors, with Phe¹\psinociceptin₁₋₁₃ only being an agonist at those in the central nervous system (e.g. Butour et al., 1998; Calo et al., 1998b). Although a potential molecular basis for ORL1 receptor heterogeneity has been established with the identification of a number of splice variants of the receptor, there is no evidence that these receptors are functionally different (Pan et al., 1998; Wang et al., 1994). Studies of nociceptin receptor binding in rodent brain have generally found only one high affinity nociceptin binding site (Foddi & Mennini, 1997; Makman et al., 1997; Albrecht et al., 1998; Varani et al., 1998, but see Mathis et al., 1997), although direct comparisons between central and peripheral nervous system nociceptin binding have not been performed.

The high activity of $Phe^1\psi$ -nociceptin₁₋₁₃ in whole animal studies has led to the suggestion that it may be converted into an active compound *in vivo* (Kapusta *et al.*, 1999). The studies reported here on dissociated cells demonstrate that $Phe^1\psi$ -nociceptin₁₋₁₃ retains agonist activity in a situation where metabolism is unlikely.

The effects of Phe¹ ψ -nociceptin₁₋₁₃ were reversible in slices, but did not reverse within the timecourse of experiments on I_{Ba} . The reason for this is unknown, but it could reflect either a very slow dissociation rate of Phe¹ ψ -nociceptin₁₋₁₃ from ORL1 receptors under conditions used to record I_{Ba} , or a non-specific interaction of Phe¹ ψ -nociceptin₁₋₁₃ with either I_{Ba} or the Gproteins which presumably transduce the signal between ORL1 and I_{Ba} . The effects of Phe¹ ψ -nociceptin₁₋₁₃ on I_{Ba} were probably mediated via a G protein dependent mechanism, because Phe¹ ψ -nociceptin₁₋₁₃ inhibition of I_{Ba} could be partially relieved by a depolarizing step to +80 mV, similar to the effects of nociceptin itself. Phe ψ -nociceptin₁₋₁₃ did not prevent the inhibition of I_{Ba} by maximally effective concentration of ME (M. Connor, unpublished observations 1999), although the inhibition of I_{Ba} by ME was partly occluded by Phe ψ -nociceptin₁₋₁₃. The lack of additivity between ME and Phe ψ -nociceptin₁₋₁₃ likely reflects the fact that I_{Ba} in LC neurons can only be inhibited to a maximum of about 50% (e.g. by high concentrations of nociceptin, as reported above).

The precursor polypeptide for nociceptin has been suggested to encode up to four additional potential peptides (Houtani *et al.*, 1996; Mollereau *et al.*, 1996; Nothacker *et al.*, 1996). The 28 amino acids carboxy-terminal to the nociceptin sequence in the precursor are strictly conserved across mouse (prepronociceptin₁₆₀₋₁₈₇), rat (prepronociceptin₁₅₄₋₁₈₁), human and cow (Houtani *et al.*, 1996; Mollereau *et al.*, 1996; Nothacker *et al.*, 1996; Okuda-Ashitaka *et al.*, 1998). The carboxy-terminal peptide appears to be a necessary product of nociceptin production. Immunoreactivity for the octacosapeptide has been detected in mouse hypothalamus and amygdala (R.G. Allen, manuscript in preparation) and a fragment

comprising the first 17 amino acids of this peptide has been shown to both stimulate locomotion (NocII, Florin et~al., 1997) and produce naloxone-sensitive analgesia (orphanin FQ2, Rossi et~al., 1998) in mice. There is no direct evidence that the 17 amino fragment of the C-terminal octacosapeptide is produced in~vivo, so we examined the effects of the complete peptide on LC neurons. The peptide had no direct effects on LC I_{Ba} or the membrane properties of LC neurons in slices, and it did not occlude the effects of nociceptin. These results are consistent with previously reported lack of effects of the octacosapeptide or its 17 amino acid fragment on nociceptin binding to ORL1 (Nothacker et~al., 1996). It is not known if rat prepronociceptin $_{154-181}$ is released in the region of the LC, nor is there any information as to the location or nature of the receptors with which it interacts.

The other product of the nociceptin precursor that has been shown to have biological activity has been named nocistatin, because it prevents or reverses the activity of nociceptin in several in vivo and in vitro assays (e.g. Minami et al., 1998; Nicol et al., 1998; Okuda-Ashitaka et al., 1998). The nocistatin sequence is not as clearly conserved across species as nociceptin or the C-terminal octacosapeptide, however, a minimal core sequence required for nocistatin activity has been identified, Glu-Gln-Lys-Gln-Leu-Gln. In this study we used an extended octapeptide sequence conserved in rat and mouse, Glu-Val-Glu-Gln-Lys-Gln-Leu-Gln (rat prepronociceptin₁₂₅₋₁₃₂, mouse prepronociceptin₁₃₁₋₁₃₈, Okuda-Ashitaka et al., 1998). Nocistatin alone had no effect on LC neurons, nor did it prevent the effects of a subsequent co-application of nociceptin. These findings suggest that, perhaps not unexpectedly, the interactions of nociceptin and nocistatin may occur at an interneuronal level, rather than at the level of a single cell. Although there appears to be a high affinity binding site for nocistatin in brain, nothing is known about its localization, pharmacology or molecular identity (Okuda-Ashitaka *et al.*, 1998).

This study demonstrates that nociceptin potently inhibits I_{Ra} in all LC neurons, which provides a further possible mechanisms for nociceptin modulation of noradrenaline release in brain (Connor et al., 1996; Schlicker et al., 1998). The putative nociceptin receptor antagonist Phe¹ψ-nocicep tin_{1-13} is a partial agonist at inhibiting I_{Ba} and opening I_K in the LC, which makes it of limited use in investigating the function of ORL1 in this brain region. Nocistatin and rat prepronociceptin₁₅₄₋₁₈₁ had no direct effects on LC neurons, suggesting that the receptors for these putative neuropeptides are either not located on LC neurons, or that the receptors couple to changes in cellular excitability via mechanisms not readily detectable using conventional electrophysiological techniques. The ORL1/nociceptin system is likely to be an important regulator of a range of functions within the LC and its projection fields.

This study was supported by the University of Sydney Medical Foundation. M. Connor was the recipient of a Rolf Edgar Lake Fellowship from the Faculty of Medicine, University of Sydney. C.W. Vaughan is the recipient of an R.D. Wright Fellowship from the National Health and Medical Research Council of Australia. E.A. Jennings was supported by The Wellcome Trust. R.G. Allen was supported by NIH NIDA Grant #11282. We thank Dr G. Calo for his kind gift of [Phe1 ψ (CH₂-NH)Gly²]-nociceptin-(1-13)NH₂.

References

- ABDULLA, F.A. & SMITH, P.A. (1997). Nociceptin inhibits T-type Ca²⁺ channel current in rat sensory neurons by a G-protein-independent mechanism. *J. Neurosci.*, **17**, 8721–8728.
- ADAMS, J.U., PARONIS, C.A. & HOLTZMAN, S.G. (1990). Assessment of the relative intrinsic activity of *mu*-opioid analgesics *in vivo* by using β-funaltrexamine. *J. Pharmacol. Exp. Ther.*, **255**, 1027–1033
- ALBRECHT, E., SAMOVILOVA, N.N., OSWALD, S., BAEGER, I. & BERGER, H. (1998). Nociceptin (Orphanin FQ): high affinity and high capacity binding site coupled to low-potency stimulation of guanylyl-5'-O-(γ-thio)-triphosphate binding in rat brain membranes. *J. Pharmacol. Exp. Ther.*, **286**, 896–902.
- ALLEN, C.N., JIANG, Z-G., TESHIMA, K., DARLAND, T., IDEDA, M., NELSON, C.S., QUIGLEY, D.I., YOSHIOKA, T., ALLEN, R.G., REA, M.A. & GRANDY, D.K. (1999). Orphanin-FQ/Nociceptin (OFQ/N) modulates the activity of suprachiasmatic nucleus neurons. *J. Neurosci.*, **19**, 2152–2160.
- ALT, A., MANSOUR, A., AKIL, H., MEDZIHRASKY, F., TRAYNOR, J.R. & WOODS, J.H. (1998). Stimulation of guanosine-5'-O-(3-[³⁵S]thio)triphosphate binding by endogenous opioids acting at a cloned *mu* receptor. *J. Pharmacol. Exp. Ther.*, **286**, 282–288.
- BIGONI, R., GIULANI, S., CALO, G., RIZZI, A., GUERRINI, R., SALVADORI, S., REGOLI, D. & MAGGI, C.A. (1999). Characterization of nociceptin receptors in the periphery: in vitro and in vivo studies. *Naunyn-Schmiedberg's Arch. Pharmacol.*, **359**, 160–167.
- BUTOUR, J-L., MOISAND, C., MOLLEREAU, C. & MEUNIER, J.C. (1998). [Phe¹ ψ (CH₂-NH)Gly²]nociceptin-(1-13)-NH₂ is an agonist of the nociceptin (ORL1) receptor. *Eur. J. Pharmacol.*, **349**, R5-R6.
- CALO, G., GUERRINI, R., BIGONI, R., RIZZI, A., BIANCHI, C., REGOLI, D. & SALVADORI, S. (1998a). Structure-activity study of the nociceptin(1–13)-NH2 N-terminal tetrapeptide and discovery of a nociceptin receptor antagonist. *J. Med. Chem.*, **41**, 3360–3366.

- CALO, G., RIZZI, A., MARZOLA, G., GUERRINI, R., SALVADORI, S., BEANI, L., REGOLI, D. & BIANCHI, C. (1998b). Pharmacological characterization of the nociceptin receptor mediating hyperalgesia in the mouse tail withdrawal assay. *Br. J. Pharmacol.*, **125**, 373–378.
- CARPENTER, K.J. & DICKENSON, A.H. (1998). Evidence that $[Phe^1\psi(CH_2-NH)Gly^2]$ nociceptin-(1–13)-NH₂, a peripheral ORL-1 receptor antagonist, acts as an agonist in the rat spinal cord. *Br. J. Pharmacol.*, **125**, 949–951.
- CONNOR, M. & CHRISTIE, M.J. (1998). Modulation of the calcium channel currents of acutely dissociated rat periaqueductal gray neurons. *J. Physiol.*, **509**, 47–58.
- CONNOR, M., VAUGHAN, C.W., CHIENG, B. & CHRISTIE, M.J. (1996). Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones *in vitro*. *Br. J. Pharmacol.*, **119**, 1614–1618.
- DARLAND, T., HEINRICHER, M.M. & GRANDY, D.K. (1998). Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. *TiPS*, **21**, 215–221.
- FLORIN, S., SUAUDEAU, C., MEUNIER, J.-C. & COSTENTIN, J. (1997). Orphan neuropeptide NocII, a putative pronociceptin maturation product, stimulates locomotion in mice. *Neuro Report*, **8**, 705–707.
- FODDI, M.C. & MENNINI, T. (1997). [1251][Tyr14]Orphanin binding to rat brain: evidence for labelling the opioid-receptor-like 1 (ORL1). *Neurosci. Lett.*, **230**, 105-108.
- GRISEL, J.E., FARRIER, D.E., WILSON, S.G. & MOGIL, J.S. (1998). [Phe¹ ψ (CH₂-NH)Gly²]-nociceptin-(1–13)-NH₂ acts as an agonist of the orphanin FQ/nociceptin receptor in vivo. *Eur. J. Pharmacol.*, **357**, R1–R3.
- GUERRINI, R., CALO, G., RIZZI, A., BIGONI, R., BIANCHI, C., SALVADORI, S. & REGOLI, D. (1998). A new selective antagonist of the nociceptin receptor. *Br. J. Pharmacol.*, **123**, 163–165.

- HAMILL, O.P., MARTY, A., NEHER, E., SAKMANN, B. & SIGWORTH, F.J. (1981). Improved patch-clamp techniques for high resolution current recording from cells and cell free membrane patches. *Pflugers Arch.*, **391**, 85–100.
- HENDERSON, G. & MCKNIGHT, A.T. (1997). The orphan opioid receptor and its endogenous ligand-nociceptin/orphanin FQ. *TiPS*, **18**, 293-301.
- HERLITZE, S., GARCIA, D.E., MACKIE, K., HILLE, B., SCHEUER, T. & CATTERALL, W.A. (1996). Modulation of Ca²⁺ channels by G-protein βγ subunits. *Nature*, **380**, 258–262.
- HOUTANI, T., NISHI, M., TAKESHIMA, H., NUKADA, T. & SUGIMOTO, T. (1996). Structure and regional distribution of nociceptin/orphanin FQ precursor. *Biochem. Biophys. Res.* Commun., 219, 714-719.
- Commun., 219, 714–719.

 IKEDA, S.R. (1996). Voltage-dependent modulation of N-type calcium channels by G-protein $\beta\gamma$ subunits. Nature, 380, 255–258.
- INGRAM, S., WILDING, T.J., McCLESKEY, E.W. & WILLIAMS, J.T. (1997). Efficacy and kinetics of opioid action on acutely dissociated neurons. *Mol. Pharmacol.*, **52**, 136–143.
- KAPUSTA, D.R., CHANG, J.-K. & KENIGS, V.A. (1999). Central administration of [Phe¹ψ(CH₂-NH)Gly²]nociceptin-(1-13)-NH₂ and orphanin/nociceptin (OFQ/N) produce similar cardiovascular and renal responses in conscious rats. *J. Pharmacol. Exp. Ther.*, **289**, 173-180.
- KNOFLACH, F., REINSCHEID, R.K., CIVELLI, O. & KEMP, J.A. (1996). Modulation of voltage-gated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. *J. Neurosci.*, **16**, 6657–6664.
- LEMAIRE, S., MAGNAN, J. & REGOLI, D. (1978). Rat vas deferens: a specific bioassay for endogenous opioid peptides. *Br. J. Pharmacol.*, **64**, 327–329.
- MAKMAN, M.H., LYMAN, W.D. & DVORKIN, B. (1997). Presence and characterization of nociceptin (orphanin FQ) receptor binding in adult rat brain and human fetal hypothalamus. *Brain Res.*, **762**, 247–250.
- MATHIS, J.P., RYAN-MORO, J., CHANG, A., HOM, J.S.H., SCHIEN-BERG, D.A. & PASTERNAK, G.W. (1997). Biochemical evidence for orphanin FQ/nociceptin receptor heterogeneity in mouse brain. *Biochem. Biophys. Res. Commun.*, **230**, 462–465.
- MEIS, S. & PAPE, H.-C. (1998). Postsynaptic mechanisms underlying responsiveness of amygdaloid neurons to nociceptin/orphanin FQ. J. Neurosci., 18, 8133-8144.
- MEUNIER, J.-C., MOLLEREAU, C., TOLL, L., SUAUDEAU, C., MOISAND, C., ALVINERIE, P., BUTOUR, J.-L., GUILLEMOT, J.-C., FERRARA, P., MONSARRAT, B., MAZARGUIL, H., VASSART, G., PARMENTIER, M. & COSTENTIN, J. (1995). Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. *Nature*, 377, 532-535.
- MINAMI, T., OKUDA-ASHITAKA, E., NISHIUCHI, Y., KIMURA, T., TACHIBANA, S., MORI, H. & ITO, S. (1998). Anti-nociceptive responses produced by human putative counterpart of nocistatin. *Br. J. Pharmacol.*, **124**, 1016–1018.
- MJANGER, E. & YAKSH, T.L. (1990). Characteristics of dose-dependent antagonism by β -funaltrexamine of the antinoiceptive effects of intrathecal mu agonists. J. Pharmacol. Exp. Ther., 258, 544 550
- MOLLEREAU, C., PARMENTIER, M., MAILLEUX, P., BUTOUR, J.-L., MOISAND, C., CHALON, P., CAPUT, D., VASSART, G. & MEUNIER, J.-C. (1994). ORL1, a novel member of the opioid receptor family. *FEBS Lett.*, **341**, 33–38.
- MOLLEREAU, C., SIMONS, M.-J., SOULARUE, P., LINERS, F., VASSART, G., MEUNIER, J.-C. & PARMENTIER, M. (1996). Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene. *Proc. Natl. Acad. Sci. U.S.A.*, **93**, 8666–8670.

- NICOL, B., LAMBERT, D.G., ROWBOTHAM, D.J., OKUDA-ASHITA-KA, E., ITO, S., SMART, D. & MCKNIGHT, A.T. (1998). Nocistatin reverses nociceptin inhibition of glutamate release from rat brain slices. *Eur. J. Pharmacol.*, **356**, R1–R3.
- NOTHACKER, H.-P., REINSCHEID, R.K., MANSOUR, A., HENNING-SEN, R.A., ARDATI, A., MONSMA, F.J., WATSON, S.J. & CIVELLI, O. (1996). Primary structure and tissue distribution of the orphanin FQ precursor. *Proc. Natl. Acad. Sci. U.S.A.*, **93**, 8677–8682.
- OKAWA, H., NICOL, B., BIGONI, R., HIRST, R.A., CALO, G., GUERRINI, R., ROWBOTHAM, D.J., SMART, D., MCKNIGHT, A.T. & LAMBERT, D.G. (1999). Comparison of the effects of [Phe1ψ(CH₂-NH)Gly²]nociceptin(1–13)NH₂ in rat brain, rat vas deferens and CHO cells expressing recombinant human nociceptin receptors. *Br. J. Pharmacol.*, **127**, 123–130.
- OKUDA-ASHITAKA, E., MINAMI, T., TACHIBANA, S., YOSHIHARA, Y., NISHIUCHI, Y., KIMURA, T. & ITO, S. (1998). Nocistatin, a peptide that blocks nociceptin action in pain transmission. *Nature*, **392**, 286–289.
- PAN, Y.-X., XU, J., WAN, B.-L., ZUCKERMAN, A. & PASTERNAK, G.W. (1998). Identification and differential regional expression of KOR-3/ORL-1 gene splice variants in mouse brain. *FEBS Lett.*, **435.** 65–68.
- REINSCHEID, R.K., NOTHACKER, H.-P., BOURSON, A., ARDATI, A., HENNINGSEN, R.A., BUNZOW, J.R., GRANDY, D.K., LANGEN, H., MONSMA, F.J. & CIVELLI, O. (1995). Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. *Science*, **270**, 792–794.
- ROSSI, G.C., MATHIS, J.P. & PASTERNAK, G.W. (1998). Analgesic activity of orphanin FQ2, murine prepro-orphanin FQ₁₄₁₋₁₅₇, in mice. *NeuroReport*, **9**, 1165-1168.
- SCHLICKER, E., WERTHWEIN, S., KATHMANN, M. & BAUER, U. (1998). Nociceptin inhibits noradrenaline release in the mouse brain cortex via presynaptic ORL₁ receptors. *Naunyn-Schmiedberg's Arch. Pharmacol.*, **358**, 418–422.
- SHAH, S., PAGE, C.P. & SPINA, D. (1998). Nociceptin inhibits non-adrenergic non-cholinergic contraction in guinea-pig airway. *Br. J. Pharmacol.*, **125**, 510 516.
- SWANSON, L.W. (1976). The locus coeruleus: a cytoarchitectonic, Golgi and immunohistochemical study in the albino rat. *Brain Res.*, **110**, 39–56.
- VARANI, K., CALO, C., RIZZI, A., MERIGHI, S., TOTH, G., GUERRINI, R., SALVADORI, S., BOREA, P.A. & REGOLI, D. (1998). Nociceptin receptor binding in mouse forebrain membranes: thermodynamic characteristics and structure activity relationships. *Br. J. Pharmacol.*, **125**, 1485–1490.
- VAUGHAN, C.W., INGRAM, S.L. & CHRISTIE, M.J. (1997). Actions of the ORL1 receptor ligand nociceptin on membrane properties of rat periaqueductal gray neurons in vitro. J. Neurosci., 17, 996– 1003
- WANG, J.B., JOHNSON, P.S., IMAI, Y., PERSICO, A.M., OZENBER-GER, B.A., EPPLER, C.M. & UHL, G.R. (1994). cDNA cloning of an orphan opiate receptor gene family member and its splice variant. *FEBS Lett.*, **348**, 75–79.
- XU, I.S., WEISENFELD-HALLIN, Z. & XU, X.-J. (1998). [Phelψ(CH₂-NH)Gly²]-nociceptin-(1–13)NH₂, a proposed antagonist of the nociceptin receptor, is a potent and stable agonist in the spinal cord. *Neurosci. Lett.*, **249**, 127–130.
- ZAMPONI, G.W. & SNUTCH, T.P. (1998). Decay of prepulse facilitation of N type calcium channels during G protein inhibition is consistent with binding of a single $G_{\beta\gamma}$ subunit. *Proc. Natl. Acad. Sci. U.S.A.*, **95**, 4035–4039.

(Received July 15, 1999 Revised August 16, 1999 Accepted September 29, 1999)